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Abstract

Background: Recently, much attention has been given to the use of inertial sensors for remote monitoring
of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not
specific activities. The objective of the present study was to develop an automated recognition and
segmentation algorithm based on inertial sensor data to identify common gross motor patterns during
activity of daily living.

Method: A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living
activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different
segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They
were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were
used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting
and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift,
normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different
activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the
right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually
segmenting the activities of the TUG.

Results: We were able to detect these activities in a TUG with 100% sensitivity and specificity (n=192) during
the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n=192) without altering
the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were
able to parse 100% of the transition points (n=224) between different segments that were as reliable and less
variable than visual segmentation performed by two independent examiners.

Conclusions: The present study lays the foundation for the development of a comprehensive algorithm to

detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor
performance within the detected tasks.
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Background

With an increasingly aging population of older adults,
promoting and maintaining a healthy mental and phys-
ical lifestyle is crucial for their quality of life. People
suffering from motor degenerative diseases often experi-
ence limited mobility, which could lead to physical and
mental deterioration further compounding the effects
of aging [1,2]. Loss of mobility will manifest itself in ac-
tivities of daily living (ADLs) through altered gait and
increased the risk of falling [3]. Since, these limitations
are felt during life activities, there is a need for a more
systematic method of monitoring and evaluating the
loss of mobility to increase the quality of life for older
adults and people suffering from motor degenerative
diseases.

Recently, inertial sensors have been used to detect hu-
man physical activities such as walking [4,5], lying [6,7]
and falling in the elderly population [8], as well as in
people with Parkinson’s disease [9-11]. The emphasis
has been on the detection of activity to evaluate mobility
both in clinical setting as well as in the home [6]. Sensor
such as accelerometer has been widely adopted to detect
physical activities due to its availability, compact size
and low power consumption [4]. These sensors have
been used to detect walking, sitting, and standing during
the course of daily living [7,12], allowing measurement
of performance parameters such as gait stride speed,
stride length, etc. A system of inertial and barometric
sensor on different anatomical locations has also been
used to detect activities such as drinking and writing
[12]. In addition to activity detection, postural transi-
tions especially during sit-to-stand and stand-to-sit have
been detected with high accuracy using a single chest
mounted gyroscope [13] and tri-axial accelerometer [4].
However, the scope of these postural transition detec-
tions has been limited to static transition and the range
of the activity that can be detected is limited by the
amount of sensory information available.

These sensors have the potential to provide continu-
ous mobility monitoring in the home environment, and
therefore are more practical to deploy than laboratory
based optical motion capture systems. The ultimate goal
is to provide information that could be used to identify
performance parameters to monitor disease or rehabili-
tation progress [14-16]. However, in order to remotely
monitor performance, one must be able to segment, i.e.,
identify the subsets of movement within an individual
task. Auto segmenting or isolating activities could then
provide time stamps within which mobility parameters
can be analyzed.

The objective of the present study was to develop and
test an automated recognition and segmentation algo-
rithm based on inertial sensor data to identify gross
motor activities pattern in daily living tasks during a
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continuous trial. We used a modified Time-Up-And-Go
(TUG) task as a model of simple activities that included
four common activities; Standing, Walking, Turning, and
Sitting performed in a continuous fashion.

Methods

Participants

Sixteen healthy, community dwelling older adults (9
females; 68.7 + 9.3 years old, height =1.6 £ 0.1 m, weight =
62.8 +84 kg, BMI=254+35 kg/m% 7 males, 67.3+
5.8 years old, height =1.7+0.1, weight=67.8+9.5 kg,
BMI=234+3.1 kg/m® were recruited through the
Centre de Recherche de lInstitut Universitaire de
Gériatrie de Montreal (CRIUGM). Participants were
screened for comorbidities and cognitive deficits.
None of the participants exhibited any physical limi-
tations or pain that could affect their ability to per-
form the task. The institutional research ethics review
board of the CRIUGM approved this research and
each participant read and signed an informed con-
sent form.

Experiment protocol

In this study, participants performed two randomly se-
lected TUG tasks, one having length of 10 meters, the
other 5 meters. Participants performed two trials of each
TUG task. The algorithm was based on the 10 meters
TUG because it provided more walking strides as well as
a more gradual transition between Walking and Turning.
The 5 meters TUG was used to evaluate the extensibility
of the algorithm for shorter distance TUG task. The
TUG was used simply because it contains key activities
(Standing, Walking, Turning and Sitting) that are per-
formed in a continuous fashion. Data recording started
with participants in a standing position to align the sen-
sors with the motion capture system, then sat down in a
plastic armed-chair to perform the TUG task. Partici-
pants then stood up from the sitting position with their
arms on the chair, walked to a distance marker on the
floor, turned around, and walked back to the chair
turned around, and finally sat down (Figure 1A). Partici-
pants were asked to perform these tasks at their own
pace and no instructions were given on how to stand,
sit, walk, or turn.

Participants performed these TUG tests while wearing
the Animazoo IGS-180 motion capture suit (Synertial
UK Ltd, Brighton, UK). The ISG-180 (Figure 1B, C) is
equipped with 17 inertial sensing modules (OS3D,
Inertial Lab, VA, USA) positioned on each limb in order
to capture full-body 3D movement. Each sensor module is
comprised of 3-axis linear acceleration (accelerometer), an-
gular velocity (gyroscope) and magnetic north heading
(magnetometer). Raw data (acceleration, angular velocity)
and fused data (3D orientation in degrees estimated from a
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Figure 1 Schematic of the TUG task and the inertial sensor motion capture system. A) Spatial schematic of a TUG path and different transition points.
Seven transitions were identified among the activities performed during a TUG. These transitions are: 1) sit-to-stand 2) stand-to-walk-out
3) walk-out-to-turn 4) turn-to-walk-in 5) walk-in-to-turn 6) turn-to-sit 7) stand-to-sit. B) Diagram of the 17 sensors and their location on the
Animazoo suit. C) A close-up view of the sensors on the shoulders, trunk and hip. D) The orientation of the axes on the sensor. Using the
right-hand Cartesian coordinate system, the y-axis line is aligned along the length of the inertial sensor while the x-axis is aligned along
the width of the sensor. E) Global work flow of the algorithm to detect the activities and transition between activities using an inertial
sensor motion capture system.

fusion algorithm [17-20] developed by Animazoo) from
each sensor were acquired at 60 Hz. Since there was no
a priori expectation as to which sensors were suitable
markers for detection and segmentation, all 17 inertial sen-
sors were active during the recording.

Sensor location

The head sensor was attached to a cap worn by the par-
ticipants, which positioned it on the right side of the
head. The trunk sensor was located on the midline over
T1, while the hip sensor was positioned at the level of

L5. For upper extremities, shoulder sensors were posi-
tioned over the scapula; upper arm sensors were posi-
tioned between the shoulder and elbow while forearm
sensors were positioned between the elbow and wrist
joint. Hand sensors were attached to an open-finger
glove, and positioned on the dorsum surface of the
hands. In the lower extremity, thigh sensors were posi-
tioned on the outer side of the limb segment between
the hip and knee. Shin sensors were positioned between
the knee and ankle. Foot sensors were attached to the
dorsum of the shoes worn by the participants.
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Signal conditioning

The signals from the inertial sensors were detrended to
remove sensor drift and normalized against the absolute
maximum amplitude of each signal (unitless) to ensure
uniformity in the analysis across all participants. Ideal
band pass filters in the frequency domain were applied.
An ideal frequency-selective filter is a system that passes
a pre-specified range of frequency components without
any attenuation, but completely rejects the remaining
frequency components. The transfer function of the
ideal pass band filter is defined as follows:

v 1 o wiswsw,y
Hipp(jw) = {0 elsewhere

(1)

Where w; and w, are referred to as the low and high
cutoff frequencies, respectively. A band pass filter was
chosen and constructed as a generalize filter for the dif-
ferent sensors in the motion capture system. The band
pass filter has a finite bandwidth as it only allows a range
of frequencies (w; <w < w,) to be passed through the fil-
ter. The dominant frequencies in these inertial sensors
during a TUG (sampled at 60 Hz) were less than 10 Hz.
The low cut frequency was set at w; = 0.0025 Hz to cap-
ture all the low frequency dynamics and to condition the
data in the frequency domain by removing the funda-
mental frequency and centralizing the data. The high cut
frequency was optimized for each sensor (w,< 10 Hz)
with an exhaustive search optimization method using
the time stamps from the inertial sensors and the visual
segmentation (see below). However, the cutoff frequency
of the hip angular velocity used for the detection of
Walking was set at the Nyquist frequency (30 Hz) to
capture the stride information during walking. At low
cutoff frequency, the stride features during Walking
would not be detectable.

Sensor selection

Activity detection

The sensors selected for activity detection were based
on how they corresponded to the biomechanics of
movement during the performance of these activities.
Standing which denotes when participants stand up
from the chair was detected using the acceleration of the
trunk (a,, trunk)- Sitting which denotes when participants
sit down on the chair was also detected using the same
sensor data. Sensors on the trunk or chest have been
used to identify Standing and Sitting during physical ac-
tivities [4]. However, in this study, the time derivative of
the acceleration (z)zy.Hip) of the thigh was also used to
differentiate between Standing and Sitting. During
Standing, ayni, >0 and during Sitting, daymp, < 0.
The angular velocity (oy, Trunik) of the trunk was used
to detect Turning. The angular velocity of the head
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(@y, Head) Was also used to verify that Turming has
occurred and the direction of Turning. Walking was
detected by using a 500-millisecond window to detect
the oscillation in the angular velocity (wy, 1ip) of the hip.
Walking was also detected during Turning; however pri-
ority was given to classify this as Turning. The detections
of Standing, Turning, Sitting, and Walking are shown in
Figure 2. The activities were detected by finding the max-
imal or minimal peaks of the selected sensors that corre-
sponded to different activities. The square signals were
generated by setting the threshold at 30% of peak ampli-
tude to provide visual indication that an event was de-
tected. The algorithm and sensors used to detect the
activities during a TUG are shown in Figure 3.

Segmentation

Four common daily living activities were featured during
a TUG task. These activities are: Standing, Walking,
Turning, and Sitting. The sequence of these activities
generated six different segments during a TUG task.
These segments were: Stand up, Walk-out, Turn 180,
Walk-in, Turn 180 and Sit down. The transition point
was defined as the separation point between two con-
secutive segments. The transition points between these
segments were identified by detecting the time stamp of
the first minimum or maximum to the left and right of
the segment peak, which marked the beginning and end-
ing of each segment in the TUG. The seven transitions
identified during a TUG are: sit-to-stand, stand-to-walk-
out, walk-out-to-turn, turn-to-walk-in, walk-in-to-turn,
turn-to-stand and stand-to-sit.

The kinematic pattern of the joints and limbs during
the performance of these activities were used to identify
a set of sensors that marked the transition point for each
segment. For example, the patterns of the trunk angular
velocity for all participants during walk-in-to-turn are
shown in Figure 4A. While there were variability be-
tween participants in the duration and amplitude of
these signals, there was a similar pattern that indicated
the beginning and ending of Turning. While the max-
imal peak in trunk angular velocity (wy, Trunk) Was used
to detect Turning, the time stamp of the first minimum
to the left and right (t,;,) of these peaks were used
to approximate the transition between Walking and
Turning (Figure 4B). Similar patterns were also ex-
hibited in the hip and head sensor. However, these sen-
sors were not always in-phase with each other; therefore,
some might have lagged while others led. Therefore, an
average of the sensor information from the head, trunk
and hip were use as surrogate approximation of the
walk-to-turn and turn-to-walk transition. The transition
time for a few selected sensors were individually and col-
lectively (using the mean) compared with the visual seg-
mentation time and the sensor combinations that yielded
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Figure 2 Activities detection during a TUG. Detection of different activities during a TUG for one participant. Raw signals were detrended and
normalized for uniformity across all participants. The detection algorithm relied on detecting the large kinematic peaks in the inertial sensor
(Timax and Tyin) that corresponded to different activities. The square signals were generated at 30% of the peaks to visually indicate that activities
were detected during TUG. A) Standing, when participants stand up from the chair, was detected using the trunk a, and the time derivative of
the hip (@, > 0). B) Turning was identified using the trunk angular velocity (w,) C) Sitting, when participants sit down on the chair, was detected
using the trunk a, and the time derivative of the hip (@, > 0). D) Walking was identified by using a 500 ms windows to detect the oscillation in

the smallest differences across all participants were used
to estimate the transition between these activities. The
selected sensors and the algorithm to detect these transi-
tions are presented in Figure 5.

Visual segmentation

In addition to the development of an algorithm for the
automatic detection and segmentation of activities
performed during a TUG, we were also interested in deter-
mining if the transition points detected by the segmenta-
tion was at least as accurate as visual segmentation done
by simply looking at the avatar. To do so, two examiners
were asked to independently segment these activities dur-
ing the 10 meter TUG using the avatar generated by the

software during the performance of the task to provide
validation to the automated algorithm. These two exam-
iners were provided with general transition segmentation
guidelines and were instructed to mark the time stamp of
when the participants began to transition into different ac-
tivities during the TUG. The variability of the marked time
between two examiners for all participants (n = 16) and all
transitions (n =224) is shown in Figure 6. The variability
between the two examiners was then used to evaluate the
performance of the algorithm in estimating the transition
points using the information from the sensors for all par-
ticipants. The examiners were most variable when mark-
ing the transition time during stand-to-walk-out while
they were less variable during sit-to-stand transition. The
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Figure 4 Temporal schematic of segment transitions during a TUG and kinematics pattern during turning transitions. A) Selected inertial sensors
are identified on the Y-axis (trunk w,) of the graphs and the kinematics pattern during a walk-in-to-turn transition for all participants (n = 16).
These patterns showed a consistent kinematic behavior of this sensor during Turning; therefore, it was used to identify Turning as well as
the transition to the activities before and after Turning. B) The raw and filtered signals of the trunk w, with two different maximum peaks
that indicated two different turns during the TUG task. The time stamps of first minimum peak to the left and right of these peaks were
used to approximate the transition point before and after Turning.
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sit-to-stand was easier to identify because it started from a
static sitting position while other transitions were dynam-
ically blended from one movement to the next. This was
also evident during stand-to-sit transition. During dy-
namic transition between different activities within a
TUG, it was more difficult for two examiners to agree on
exactly when the activities started and ended because of
how differently participants performed the TUG. Further-
more, these variations between the examiners were also
evident in individual participant. These examiners were
more variable in some participants than others during

segmentation of the same transition. This indicates that
participants did not perform the task in exactly the
same way, which might affect the judgment of the ex-
aminers as to when the transition started and ended.
The differences in how participants performed the task
might contribute to the variability between the exam-
iners. Since participants were performing the TUG at
their own pace, the time stamp (7) was shifted to zero
to normalize the marked time across all participants. It
took approximate 7 minutes to visually segment one
30-second trial.
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Figure 6 Variance of the visual segmentation of different transition points during a 10 m TUG between two examiners. The variance (mean = std)
from the visual segmentation of the different activities in a TUG for all participants (n=16) at all transition by two independent examiners. The
segmentation was marked by using the avatars provided by Animazoo. Participant performed two trials of the 10 meter TUG.

Range of Motion (ROM) calculation

In addition to using the velocity and acceleration
profiles of each sensor for the automatic detection
and segmentation of activities performed during a
TUG, we also considered the orientation data origin-
ating from the fusion algorithm of the sensors. To
do so, quaternions were used to calculate the angles
between limb segments, for instance, the angle be-
tween the hip and the thigh (hip ROM) or the angle
between the thigh and the tibia (knee ROM). To cal-
culate these angles, we used the quaternion output,
which is a four-dimensional scalar and vector repre-
sentation of complex numbers,

q=[wxyz (2)

Where w is a real number and v = [x y 2] is a vector

For example, let ¢; and ¢, represent the quater-
nions of the hip and thigh respectively and g, de-
fines the relative quaternion between these two segments,
then

Drel = qu * q> (3)

To track the relative changes of a quaternion during
the TUG, a reference quaternion, g,.; was recorded at
the start of each trial when participants were in a

standard pose position with their arms along the sides.
The change in the quaternion was defined as

qn = q;e} * rel (4)

Post-processing algorithms were applied to g to en-
sure small angle representation (less than 180°) and con-
tinuity in the signal. The range of motion of the hip and
knee were calculated by taking the real part of the in-
verse cosine of the quaternions.

ROM = real(2cos™ (q,)) (5)

High cut frequency optimization

The high cut frequency for the band pass filter (w,) was
found my minimizing the sum of the square difference
between the transition time stamp acquired using the in-
ertial sensor and visually by two examiners across all
participants (n = 16).

16

. . . 2
minimize { Z (T manuar k=T sensor ) (6)
k=1

The objective function of the optimization problem to
find the high cut off frequency is shown in eq. 6, where
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Tyisual, x Was the mean time estimated by both examiners
and Tgensork Was the time estimated by the inertial sen-
sors(s) and k was an index for the participants. This was
done for all selected sensors for all seven transitions.
The sensor or combinations of sensors (mean) that yield
the lowest cost function across all participants were se-
lected to approximate the transition time. An example
of the cost function of the trunk acceleration (a,) as a
function of the high cut-off frequency is shown in
Figure 7A.

An exhaustive search optimization method [21] was
used to find the high cutoff frequency for the inertial
sensor (0.5 Hz < w, <10 Hz). This frequency band corre-
sponded to the dominant frequencies of the activities
performed during a TUG. 2000 steps between this
frequency band were used to find the optimal high
cut frequency. The optimal high cutoff frequencies for
each sensor during each transition are summarized in
Table 1.

Independent measures

Sensitivity and specificity [22] were used to evaluate
the performance of the algorithm to auto detect the
activities performed during a TUG. Sensitivity mea-
sures the proportion of actual positive activities de-
tected (true positive) while specificity measures the
proportion of the negative activities that were de-
tected (true negative).

The means of the absolute differences (AT) and the
variances (o) between the transition time segmented
visually by two examiners and automatically using the
inertial sensors were used to evaluate the performance
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of the algorithm across sixteen participants at each
transition. The time difference at each transition was
defined

1 J6
AT = 16 ;| Tvisuat k=T Sesnor .k i @)

Where k was an index for the numbers of participant.

Results

The aims of this work were to develop an algorithm to
utilize data from inertial sensor to detect activities such
as Standing, Sitting, Walking and Turning as well as iso-
lating these activities for post analysis of performance.

Segment detection

The data analysis on 16 participants performing two
trials of a 5 and 10 meter TUG task yielded 384 (16 par-
ticipants x 6 segments x 2 trials x 2 tasks) instances
of activities such as Standing, Sitting, Walking, and
Turning. Using the algorithm with the selected sensors,
the proposed algorithms were able to detect the activ-
ities with 100% sensitivity and specificity during the 10
meter TUG (n=192). To validate the generality of the
algorithms in detecting these activities, we then pro-
ceeded to test the same algorithms and parameters on
the data recorded during the 5 meter TUG (n=192).
Participants performing the 5 meter TUG displayed
similar kinematic patterns with half the duration
(~15 vs. ~28 seconds). Again, without changing any of
the parameters, the algorithm was also able to detect
these activities with 100% sensitivity and specificity.

B Optimal w, Across Participants

A Cost Function

10000

7500

B 5000}
o
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0 1 1
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were also observed in other sensors for all seven transitions.

Figure 7 Optimization of w, of trunk a, during sit-to-stand transition. A) The cost function of the trunk a, as a function of the high cut frequency
(w,) during sit-to-stand transition across all participants (n = 16). B) The convergence of w; as it optimized across more participants. This result
indicated that kinematics patterns were stable in these inertial sensors during the performance of these activities. While there was variability
between participants, the optimal frequency quickly converged when more participants were factored into the cost function. Similar behaviors
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Table 1 Optimal high cutoff frequency for each sensor at different transitions during a TUG task

Transition Sensor
1 Freq (Hz) 2 Freq (Hz) 3 Freq (Hz)
1. Sit-to-Stand Trunk a, 1.57 Hip wy 069
2. Stand-to-Walk Trunk a, 244 L Knee ROM 8.30
3. Walk-to-Turn Trunk vy, 132 Head wy 0.79 Hip vy, 098
4. Turn-to-Walk Hip vy, 053 Head wy 041
5. Walk-to-Turn Trunk vy, 1.00 Hip w, 0.59
6. Turn-to-Stand Trunk vy, 1.00 Hip w, 081
7. Stand-to-Sit Hip a, 1.07
Transition detection average, the automated segmentation (G4, = 86 ms)
When applying the segmentation algorithms to the 10 was less variable than the visual segmentation

meter TUG, we were able to parse 100% of the transi-
tion points (n=224) between different segments. The
differences and variances between the visual and auto
segmentation of a 10 meter TUG across all transi-
tion points for all participants (n=16) are shown in
Figure 8A-G. The smallest variability across all partici-
pants using inertial sensors was during the sit-to-stand
transition (o = 25 ms, Figure 8A) while the largest variabil-
ity was during the turn-to-stand transition (o =174 ms,
Figure 8F). In comparison, the smallest variability during
visual segmentation between the two examiners was
also during sit-to-stand; however, the variance was lar-
ger (0=60 ms). During stand-to-walk-out transition,
the estimated transition time was more variable when
marked visually by two examiners (o0=253 ms) than
using the inertial sensors (o =66 ms, Figure 8B). On

(Caute = 86 ms) across all participants and transitions.

The smallest difference between the visual and auto
segmentation was during the sit-to-stand transition
(AT =25 ms) while the largest was during the turn-
to-stand transition (AT =180 ms). Across 7 transitions,
the average difference between the visual and auto segmen-
tation was approximately AT,.=93 ms. The estimated
transition time across all participants approximated using
the inertial sensors were within one standard deviation of
the transition time marked visually by two examiners.

Discussion

The aims of this work were to develop an algorithm that
utilized the information from an inertial sensor-based
motion capture system to identify gross physical activ-
ities performed during daily living and automatically
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Figure 8 Differences between visual and auto segmentation of transition time during a 10 m TUG. A-G) The time stamp differences (mean + std)
of individual participant and of each transition (AT). This was the difference between the transition time marked visually by two examiners and
the time detected using the inertial sensors. H) On average (n = 16), the absolute difference between the times marked visually and using inertial
sensors were within one standard deviation of each other for all transitions.
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isolate these activities for future performance analysis.
This was accomplished by using an optimization method
to filter and identify body-worn sensors in the system
that were strongly associated to different activities and
yielded the best performance. The results from the
optimization lead to the development of an efficient de-
tection and segmentation algorithm that minimized the
effect of movement variability between participants
while robustly detect and segment the activities during a
TUG. This study has also demonstrated that using a set
of inertial sensors and applying the detection algorithm,
it was possible to identify and segment these activities
during continuous execution of daily activity tasks in a
healthy older adult population with 100% accuracy.

Attempting to detect specific activities is not a new
concept. For instance, Torres et al. [12] using a module
of inertial and barometric sensors place at different loca-
tion of the body were able to detect walking at 100% and
sit and stand at 86% and 89%, respectively. Godfrey
et al. [4] used a chest mounted accelerometer to detect
Standing with sensitivity and specificity of 83% (+11)
(mean * SD, n =10)). While Najafi et al [13] could de-
tect the same activity with more than 95% sensitivity
and specificity in healthy elderly using a miniature gyro-
scope during long-time monitoring. In the present study,
using a combination of pertinent information from spe-
cific sensors, we were able detect these activities with
100% specificity and sensitivity.

Since participants were told to perform the task at
their own pace, there was variability in how they per-
formed the TUG task. In fact, an older population was
specifically selected because of its inherent variability in
performing tasks, in addition to be the type of popula-
tion that is more often the subject of mobility assess-
ment. Using the optimal approach to find the cutoff
frequencies, we minimized the effect of variability be-
tween participants by generating a single set of parame-
ters (cutoff frequency) that can be applied to all
participants. The global convergence of these cutoff fre-
quencies indicated that kinematic patterns generated by
the participants during the performance of the TUG
were very similar (Figure 7B).

Segmentation of these activities during daily living will
become crucial when this type of sensors are deployed
remotely in homes and free environments for long-term
monitoring of patient’s mobility. Also, segmentation
using the avatar is hugely time consuming. Case in
point, we have asked an examiner to segment a five-
minute free-living mobility activity of a person moving
in an environment where they were able to perform
multiple tasks. It took the examiner 5 hours to visually
identify the different segments and time-stamp the tran-
sition points. While general guidelines were presented to
the examiners on how to segment this task, there was
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still a large variability between the examiners on deter-
mining the onset and end of segments, especially during
dynamic transitions (Figure 6). In general, the transition
points detected by the algorithm were less variable than
visual segmentation across all transition points and par-
ticipants (Figure 8). If we are to assume that times
marked by visual inspection is the gold standard, then
largest time difference between the visual and automatic
segmentation were approximately 180 ms during the
most challenging transition, turn-to-stand. Given that
the average variance between the examiners were 175 ms
during this transition, the difference between visual and
automatic segmentation would not be significant; yet,
the algorithm was significantly faster in detecting these
activities and segmenting the TUG task.

Detecting if a person stands up or sits down is critical
for monitoring and evaluating sow well the person has
performed that task. For example, the time it takes for
patients to perform a sit-to-stand task has been corre-
lated with the risk of falling as well as functional recov-
ery in community dwelling elderly [15,16]. Cheng [23]
showed that time needed to complete a 180° turning was
a good index to differentiate between fallers and non-
fallers in individual with Parkinson’s disease (PD). Stack
[24] showed that, on average, people with PD took more
steps during turning to compensate for the difficulties
experienced during turning. The present study provides
an automated method to quickly isolate out these activ-
ities using inertial sensors. Such segmentation will be
used in the future to assess the quality of the mobility
for the detected tasks.

Conclusion

The present study lays the foundation for the develop-
ment of a comprehensive algorithm to detect and seg-
ment activities performed during daily living using
inertial sensors. The current study is limited in scope by
the relatively simple tasks that were segmented, the en-
vironment in which the tasks were performed, and the
relatively healthy population that performed the tasks.
We are currently applying the detection and segmenta-
tion principles to less scripted tasks and in more un-
structured environments, with longer trial durations. We
are also testing our algorithms on populations with
altered mobility. We expect that introducing more
complex tasks and in a more variable environment
and population would probably require more sensors
(redundancy) to detect and segment the tasks. This
is why we always record the tasks with 17 sensors, in
the hope of providing the optimal sensor set for specific
conditions. We also suspect that further optimization will
be required when populations with altered mobility are
studied. Nonetheless, the current results lay the founda-
tion for future research, and could be utilized to develop



Nguyen et al. Journal of NeuroEngineering and Rehabilitation (2015) 12:36

a fully-automated TUG capture and analysis system. Ul- 8.
timately, the detection and segmentation of these activ-
ities is needed to develop performance metrics to
evaluate and monitor people with mobility impairment
due to disease and old age.
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